Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
نویسندگان
چکیده
Understanding the nature of the self-assembly of peptide nanostructures at the molecular level is critical for rational design of functional bio-nanomaterials. Recent experimental studies have shown that triphenylalanine(FFF)-based peptides can self-assemble into solid plate-like nanostructures and nanospheres, which are different from the hollow nanovesicles and nanotubes formed by diphenylalanine(FF)-based peptides. In spite of extensive studies, the assembly mechanism and the molecular basis for the structural differences between FFF and FF nanostructures remain poorly understood. In this work, we first investigate the assembly process and the structural features of FFF nanostructures using coarse-grained molecular dynamics simulations, and then compare them with FF nanostructures. We find that FFF peptides spontaneously assemble into solid nanometer-sized nanospheres and nanorods with substantial β-sheet contents, consistent with the structural properties of hundred-nanometer-sized FFF nano-plates characterized by FT-IR spectroscopy. Distinct from the formation mechanism of water-filled FF nanovesicles and nanotubes reported in our previous study, intermediate bilayers are not observed during the self-assembly process of FFF nanospheres and nanorods. The peptides in FFF nanostructures are predominantly anti-parallel-aligned, which can form larger sizes of β-sheet-like structures than the FF counterparts. In contrast, FF peptides exhibit lipid-like assembly behavior and assemble into bilayered nanostructures. Furthermore, although the self-assembly of FF and FFF peptides is mostly driven by side chain-side chain (SC-SC) aromatic stacking interactions, the main chain-main chain (MC-MC) interactions also play an important role in the formation of fine structures of the assemblies. The delicate interplay between MC-MC and SC-SC interactions results in the different nanostructures formed by the two peptides. These findings provide new insights into the structure and self-assembly pathway of di-/tri-phenylalanine peptide assemblies, which might be helpful for the design of bioinspired nanostructures.
منابع مشابه
Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.
The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures...
متن کاملStructures, function and applications of amphiphilic peptides
Major recent ad ances: Amphiphilic peptides, in other words, peptides that contain hydrophobic and hydrophilic regions along their lengths, have been molecularly designed and exploited in various ways. Most notable advancements in the past few years are their proposed use for scaffolds for nanometer structures such as molecular wires and mineralization of hydroxyapatite crystals in a particular...
متن کاملLipid-like Self-Assembling Peptide Nanovesicles for Drug Delivery
Amphiphilic self-assembling peptides are functional materials, which, depending on the amino acid sequence, the peptide length, and the physicochemical conditions, form a variety of nanostructures including nanovesicles, nanotubes, and nanovalves. We designed lipid-like peptides with an aspartic acid or lysine hydrophilic head and a hydrophobic tail composed of six alanines (i.e., ac-A6K-CONH2,...
متن کاملUltrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications
In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembl...
متن کاملEffect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method
In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2014